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ABSTRACT 

Thom's estimators for the two-parameter gamma distribution arise as asymtotic approximations t o  the maximum 
likelihood estimators. Being perhaps the simplest estimators known in this case, their properties are here investigated. 
We show that although they do have slight asymptotic bias even in very large samples, yet for almost the whole 
of the parameter space they have smaller asymptotic variances than the maximum likelihood estimators; more than 
this there is evidence that in finite samples the property still holds. As for the type of the sampling distributions 
involved, Thom's estimators are in general slightly nearer to normality than the maximum likelihood estimators. 

The occurrence of estimators that  are improvements on the maximum likelihood estimators, be the improvement 
only slight, is rather rare and becomes of particular interest when they arise in a practical situation. 

4 .  INTRODUCTION 

It is well known that the gamma distribution with two 
parameters has wide application in meteorology; for ex- 
ample, it may be used to  describe the distribution of rain- 
fall amount per period (day, week, month), also the 
distribution of rainfall amount per storm (rainy period), 
and areal rainfall. The smoothed distribution can then be 
used, among other things, to assess probabilities of pre- 
cipitation amounts in excess of given values. The relevance 
of the distribution to these situations has been described 
by Thom (1957, 1958, 1968) and others. 

Again, hhe gamma distribution is receiving considerable 
attention in certain aspects of the interpretation of the 
relation between precipitation and streamflow ; references 
are to be found in connection with frequency analysis in 
hydrology. 

Moreover, because of the feedback from very large sets 
of data from automated instrumentation in precipitation 
and water runoff, it is clear that the gamma distribution 
will receive increased attention, so that a more detailed 
knowledge of its properties is likely to be useful. When 
writing the density of the distribution in the form 

the maximum likelihood estimators b , $ of the parameters, 
based on a random sample xl, x2, . . . , x,, are given by 

1n+-+G)=ln (ml/g) (2 4 

r*b=m,, (2b) 
and 

where $(x) =d In I'(z)/dx (the psi-function), and ml and g 
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are the sample arithmetic and geometric means, respec- 
tively. Since equations (2) are not quite easy to solve 
(there is of course no particular difliculty if one has access 
to a digital computer), Thom (1957, 1958) has introduced 
the estimators 

where y=ln(ml/g). He derived these by replacing the psi- 
function in ( 2 4  by the first three terms of its asymptotic 
expansion for large y. In  passing, we note that Greenwood 
and Durand (1960), a year or so later than Thom, intro- 
duced a very accurate rational fraction approximation to 

in terms of the random variate y; it seems fair to say 
that their approximation is not as simple as Thorn's. 

In this note, we show that Thorn's statistics are: 
a) slightly bia'sed, no matter how large the sample; 

however, this bias is almost negligible for y>>O, and 
indeed is only of any real importance if y is small (say less 
than 0.1 approximately) ; the bias in finite samples is about 
the same as for the maximum likelihood estimators; 

b) superior to  the maximum likelihood estimators 
because their variances are less in large sample theory; 
there is evidence that this property holds in finite samples 
also ; 

c) about as near to normality (as measured by skewness 
ancl kurtosis) as the maximum likelihood estimators; 
atctually the distribution of 5 is generally nearer to the 
normal form than that of j. 

If t,he remark in b) causes surprise, one may recall that 
the Cramer-Rao inequality (Cramer 1946), a t  least in the 
one-parameter estimation situation, does not preclude the 
possibility of improving the asymptotic variance, although 
this may be at  the expense of a permanent bias. 

Since the development of the results has @ much in 
common, from a procedural point of view, with recent 
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work of the authors (for example, Shenton and Bowman 
1968, 1969), we shall omit some of the details. 

9. EXPANSIONS FOR THE ESTIMATORS 
It would appear to be obvious that expansions for 9, 
should use y as the variable. However, the derivatives 

of the estimators with respect to y depend on n, the 
sample size, and this causes rather serious complications 
when we select the coefficients of powers of n-' in the 
moments. This difficulty is avoided if we use a bivariate 
Taylor expansion in the arguments 

1964). , *  

+. . . (sa) 523 
23 + 1 1 yoNy+----------- 

607' 180y3 3780y4 2 2 6 8 0 0 ~ ~  
and 

+. . .) (8b) Po--P 1--+7+-6-- 
1 1 23 23 ( 6 W  18oV 37807 1 1 3 4 0 ~ ~  

where the symbol - refers to asymptotic equivalence 
(de Bruijn 1961). Evidently, the permanent bias is quite 
small as long as y is not small; in this case we require 
the expansion (Abramowitz and Stegun 1964, using 
6.3.12 in conjunction with 6.3.5) 

1 
u=ml-E m1 w=-y-c- 5 (-l>mr(m)ym-l, (lYI<l)l (9) 

m=2 
to  obtain and (4) 

v=ln g - E  In g, m 

(10) 

in which C=0.5772 . . . is Euler's constant and c(m)= 
C m-s is the Rieman zeta function. Reverting to (7) we 

have 

1 o--+ln y-C+C (-l)m{(m)y*-' 
where E is the expectation operator. Thus with -7 m=2 

u=ml-yp and V=t-T (5) m 

where t=ln 9, T=Et=$(y)+lnp, we have s=l 

where a typical term in (6a), for example, is 
- *  (;) u7vS-' r=o, 1 , .  . ., s, 

in which the derivative factor is to be interpreted as 

amrat-7 as; i ml=y8, f = r ,  ;=yo 

The equations (6) will be seen to be consistent in the 
sense that u=v=O clearly implies ;=yo, J=p,. Now from 

for u=v=O, 

from which 

Y =In (u+ ra> - (v+ 7) 

Yo=ln -r-+(7), 

and 

Thus in this case, the estimators do not even have the 
correct order of magnitude in large samples; however, 
this is not particularly important since the magnitudes 
involved are small, and in any case one must recall from 
the method the estimators were conceived that it would 
indeed be surprising if they had good properties for 
small values of y. We shall give numerical assessments of 
the biases in infinite and finite samples in the sequel. 

3. THE ASYMPTOTIC BIASES AND COVARIANCES 

We show briefly how to set up the n-I coefficients in the 
biases and covariances. For these we need the joint 
moments of u, v, and the bivariate derivatives of y, p 
with respect to  ml, t, taken a t  the population point. 

The moments can be found from the joint moment 
generating function (Shenton and Bowman 1968) 
E e p u + w , E  e ~ ( m l - y p ,  +dlng--r) ,e-Pyp--Qr(E ePzln+-Q m / n  n 

* *  

1 (12) 

because of statistical independence. But from equation 

(I), 

so that These expressions give the dominant asymptotic terms in 
the mean values of ;, 5. Observe in passing that yo-y is 
related to A? as tabulated by Thom (1958, page 119). 
How serious are the discrepancies Since 
the estimators were derived by an asymptotic approxima- 
tion to  \t(y) for large y, let us see how they behave in 

E e ~ u + w =  

From this, the joint cumulant generating function may be 
expanded as 

this case. We find, using the asymptotic expansion for 8=2 8 
the psi-function (Thom 1958, Abramowitz and Stegun (14) 
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Hence, for the joint cumulants of u, v, we have 

(T- 1) !@', 
- - s=1, r> 1; 

nr 

=0, otherwise. 

The joint central moments of u, v, defined by 

pr, s= Eu'V 

and 

VOI. 98, No. 2 

The population values of the derivatives, yllo, yell and 
so on, follow from (18), and so for the mean value of $, 
as far as the n-l coefficient goes (say El$), we have 

1 
El;=% (PZ, OY2,0+2Pl, IY1,1+P0,2Y0.2) 

where hzr h3 are the population values of H2, Ha, respec- 
tively. Thus after simplification and the use of (la), 
we find 

/ 1 . 1 \  

can now be evaluated recursively (and to a high order on a 
digital computer) from expression (8) in Shenton and 
Bowman (1968). As examples we have 

Similarly by differentiating the relation .t: $=m1 with 
respect to ml and t to set up the second-order derivatives 
of in terms of those for ;, we find after simplification 

and 

It is interesting to note that since asympt,otically 
Turning to the derivatives, we have from (3a) 

1 1  1 -+- +l(Y)-$l ( Y B O )  

-+- --$1(7)-;;2 

1 1  2r2 6r" - + T 2 = l n  m,--t, 

Y3 2Y4 

(16) and 
1 

2; 12Y 
1 1  

so that writing $l,ol $o,l, (with obvious extensions) for the 
partial derivatives with respect to ml, t respectively the n-l biases of Thorn's estimators are from (19) approxi- 

mately 

and 

* 1  
El; -4 (-- 2 + d1 (Y) -Y v* (Y 1 )/(dl (Y) - 1 ) 

Note the simple relation 

" B  
(17) E* B - 5 ($1(r) +"/1c/?(Y) > / ( M Y )  - 1 IZ 

which are exactly those for the maximum likelihood 
estimators (see (18.1) and (18.2) of Shenton and Bowman 

* K  1968). 
m l Y l , o f Y o ,  1=0 

which is the analogue of (16) in Shenton and Bowman 
(1968) and which is of considerable use in setting up 

The n-1 covariances, denoted by van; etc., are derived 
similarly, and we find 

1 
91W; 

(20%) higher derivatives , varl, y= 2' 

Similarly for the second-order derivatives, 

and 

where 
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TABLE 1.-Biases for the maximum likelihood and Thorn’s estimators 
(n-1 through n+ terms) 

(8) &-Y)/Y (b) E(;-v)h 
Y n- f n-2 11-3 71-4 It-J 11-8 

TABLE 2.-Variances for maximum likelihood and Thorn’s estimators 
(n-1 through n-B terms) 

0.1 (a) 1.684 4.114 9.231 14.35 61.70 577.6 
(hl 1.612 3.886 8.797 14.08 62.93 580.9 

0.1 (a) 1.094 7.240 37.47 175.9 806.8 3697 
(b) 1.078 6.513 33.34 159.4 763.9 3545 

0.5 (a) 2.171 6.001 17.82 54.42 164.3 479.3 
(b) 2.122 6.W5 17.88 54.29 163.8 482.0 

1.0 (a) 2.463 7.236 21.81 65.40 195.0 587.2 
(b) 2.450 7.246 21.79 65.39 195.2 586.3 

0.5 (a) 1.363 12.43 84.93 517.2 2952 16070 
(b) 1.272 12.03 83. @4 515.3 2944 16040 

1.0 (a) 1.551 15.77 114.4 714.9 4105 22416 
(b) 1.513 15.67 114.2 714.1 4103 22412 

~ 

5.0 (a) 2.871 8.610 25.83 77.48 232.5 697.3 
(b) 2.871 8.610 25.83 77.48 232.5 697.2 

(a) Ed-@)/@ (b) E(&@)/@ 

5.0 (a) 1.876 20.47 152.1 959.2 5540 30380 
(b) 1.875 20.47 152.1 959.2 5540 30383 

(a) var &/@I (b) var 

0.1 (a) -0.591 -0.951 -0.057 9.064 -0.389 -432.5 
(b) - .441 - .558 - .W7 4.771 -1.841 -225.9 

0.5 (a) -0.808 -0.278 0.069 0.184 -0.390 -0.959 
(b) - .831 - .202 .os1 .049 - .198 .206 

0.1 (a) 11.09 -1.387 -22.49 -8.473 227.8 263.4 
(b) 5.664 -3.399 -6.986 0.236 79.28 4.755 

0.5 (e) 3.363 -1.287 -2.230 -0.8N 1.831 3.618 
(b) 2940 -1.713 -1.521 - .233 1.595 -0.904 

1.0 (a) -0,913 -0.114 0.065 -0.1M 0.114 0.823 
(b) - .934 - .071 .027 - .040 ,053 .027 

5.0 (a) -0.995 -0.001 -0.005 0.002 -0.001 0.000 
(b) - .996 - .001 - .M)3 .001 --.OM) .153 

As was the case for the biases, if we use the approxima- 
tions for the denominators for large y, then the above 
covariances will be seen to be asymptotically equivalent 
to  the maximum likelihood covariances (Masuyama and 
Kuroiwa 1951, Shenton and Bowman 1968, Thorn 1958). 
That the variances (20a), (20c) are in general (y 2 0 . 1  
approximately) less than those for the maximum likelihood 
estimators seems difficult to  prove analytically. However 
after some algebra, it turns out that for large y, we have 

and 

I * 
+... . (2lb) 

These expressions show that for sufficiently large y 
Thorn’s estimators are improvements on the maximum 
likelihood estimators. A few numerical comparisons are 
given in the column headed n-l in table 2. There is little 
between the variances if y 2 1, and it is indeed remarkable 
that the improvement is somewhat more emphatic for 
0.1 I y  <l.O.  Again notice that the improvement is 
more marked for 

Since the moments of the estimators considered here 
involve infinite series in powers of n-l, it is conceivable 
that any advantage enjoyed by one estimator over 
another for the dominant terms might be lost when 
higher order terms are included, so that in finite samples 
the advantage might not hold. We now consider this 
aspect of the problem. 

than for +. 

1.0 (a) 2.551 -1.486 -1.263 0.355 0.188 -4.552 

5.0 (a) 2.076 -1.955 -0.093 -0.048 0.041 -0.063 

(b) 2440 -1.703 - .927 .301 -1,151 -0.484 

(b) 2.074 -1.966 - .096 - .017 . 007 .006 

4. BIASES AND COVARIANCES IN FINITE SAMPLES 
Using the methods described in Shenton and Bowman 

(1968) for the maximum likelihood estimators, we have 
programmed the procedure for evaluating the first four 
moments of and p, including terms up to order six in 
n-’. A considerable economy in the computations arises 
because of the scale-free nature of the estimators; thus 
it is not difEcult to show that the joint moments of y and 
t / p  are independent of p. Actually it is beneficial to use 
yfy instead of ;, the division by y tending to stabilize the 
moments. A selection of the results is given in tables 1 
and 2, these referring to  the biases and variances; the 
corresponding results for the maximum likelihood esti- 
mators are also included for comparison. It will be noticed 
that the coefficients of powers of n-l for the bias and 
variance of y are all positive and in general form an 
increasing sequence for given y; by contrast, those for 
p oscillate and become s m d  in magnitude for the higher 
orders. For the most part, the coefficients for the moments 
of are less than those of ;; this breaks down for the 
higher order terms in the bias when y is small, although 
the difference is small. It is not so easy to compare the 
terms in the moments of and i ;  but in general they are 
very close in value, and it seems fair to say that Thorn’s 
statistic, as far as the n-‘ and n-2 terms are concerned, 
has the advantage. 

Good approximations to the moments of the estimators 
can be found by noticing the structure of the series 
involved. Thus for ;, since the terms damp off quite 
rapidly, quite small values of n can be used; however, the 
minimum sample size required tends to increase with the 
order of the moment. It turns out that a sample of size 

* 

* 
* 

* 

* 
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TABLE 3.-Comparison of standard deviations for maximum likelihood 
and Thom's estimators in finite samples 

Sample ML Ttom ML Ttom 
Y size (n) o(.t)/r U(Y) lY  b6)l)js .(@)I8 

0.1 25 
50 
100 

0.5 25 
50 
100 

1.0 25 
50 
100 

5.0 25 
50 
100 

0.2414 
.I584 
.lo82 
,2856 
.1817 
.1223 
.3114 
.I959 
.1312 
I3474 
.2170 
.1448 

0.2370 
.1m 
.lo71 
.n79 
.1761 
.1184 
.3086 
.1938 
.1297 
.a74 
.2170 
.I448 

0.6634 
,4703 
. 33% 
.2583 
.la30 
.3155 
.2245 
.1592 
. a 2 7  
.2018 
.1434 

. 3 p  

0.4698 
. a 5  
.2373 
.a88 
.2410 
.1710 
.3w9 
.2193 
,1556 
.a25 
.2017 
.1433 

n=10 is quite adequate to control the terms in the first 
four moments of 

being 
positive and nondecreasing require a different approach; 
in fact they are so close to the maximum likelihood 
moments that we used extrapolatory methods on them as 
is described in Shenton and Bowman (1968). 

A comparison of the variances of the two sets of statistics 
in finite samples is given in table 3 .  I t  will be seen that for 
the parameter values shown, Thorn's estimators have 
smaller variance than the maximum likelihood estimators. 
The improvement is only slight for the y estimator, but i t  
is more marked for the p estimator, especially for 
small values of y. Again, the relationship of the variances 
for finite samples is about the same as that for the asymp- 
totic variances, that is, Thorn's estimators still have 
smaller variances in general (7 2.0.1). 

for y 20.1. 
The terms in the series for the moments of 

5. SKEWNESS AND KURTOSIS 

Following the method soutlined in section 4, the 
skewness (,&=CL~/CL$/~) and kurtosis ( P z = c L ~ / c L ~ ~ )  for the 
distributions of; and have been computed, and a few 
values are given in table 4 along with the corresponding 
values for the maximum likelihood estimators. For the 
&variate, Thorn's estimator (for the parameter values 
considered) is less skew and has a smaller kurtosis; that is, 
it  is nearer the normal distribution. For the y-variate, 
Thorn's estimator has a nearer to  normal distribution 
than the maximum likelihood for small values of y, but is 
not quite so good for 720.5  (approximately), although 
the difference is in general quite small. For large y, there 
is very little to choose between the estimators. 

6. INDEPENDENT STATlSTlCS AND THE ESTIMATORS 

We observe that p=ml/y, where y is a function of 
y=ln (m,/g). I t  turns out that ml and y are statistically 
independent. A proof of this starts with the joint generat- 

* * * 

TABLE 4.-Skewness (&) and kurtosis (82) for the mazimum likeli- 
hood and Thorn's estimators 

ML Thorn v'am M Y )  
r Sample ML 

size (n) 

0.1 25 
50 
100 

5.0 25 
50 
I00 

1.0 25 
M) 

100 
5.0 25 

60 
100 

1.009 
0.658 
.449 
1.269 
0.796 
.535 
1.355 
0.848 
.569 
1.403 
0.881 
.592 

0.938 
.608 
.414 
1.304 
0.817 
.549 
1.374 
0.861 
.578 
1.404 
0.881 
.592 

5.110 
3.847 
3.389 
8398 
4.257 
3.556 
6.842 
4.418 
3.625 
7. w 5  
4.514 
3.669 

4.873 
3.743 
3.339 
6. 585 
4.324 
3.584 
6.932 
4.455 
3.642 
7.077 
4.515 
3.669 

0. 1 25 
50 
100 

0. 5 25 
50 
1M) 

1.0 25 
50 
100 

5. 0 25 
60 
100 

1.526 
1.052 
0.724 
0.919 
.a9 
.448 
0.772 
.538 
,377 
0.612 

.428 

.301 

1.405 
0.980 
.m 

0.864 
.m 
.423 
0. 743 
.519 
.364 
0.611 

.427 

.m 

6.808 
4.791 
3.868 
4.418 
3.682 
3.334 
3.992 
3. 480 
3.236 
3.582 
3.284 
3.140 

6.136 
4.512 
3.742 
4.229 
3.695 
3.293 
3.906 
3.440 
3.127 
3.579 
3.2s 
3.140 

which is assumed to exist. Hence assuming that the opera- 
tions of integration and expectation can be interchanged, 
we have 

r ~ - l  { j'j! e - ( p + r ) m i + c  lng}dr=r(p)E e - p m i - @  In (mil@ 1 (23%) Lm 
and 

Hence, 

which is readily seen to factor into Ee-pmI and Ee-qu. 
Hence, m1 and y are statistically independent. 

We can apply this result to simplify the moments of 

P ,  for 
* 
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Then @=Ed( 1 +4~/3) .  ,j(a)=n{ -~(l--$)+B1(1--l.)a+B1(1--1)d3 2.1! n2 a7 4.31 n4 ar3  

Ei=3Em1E{d-- 1 ] =3/3r(@-l), (26a) 

for if two statistics are independent then so are well- 
+$!(1-$)~+ 1 a 5  ...} h(l+%)- (29) nY 

But 
1 s=1, 

s=21 

behaved functions of them. Again, 

E 3  = 9Emf E (2 +4y/3 -2 d m )  
1 1 - -_- 

Y2 (y+aM2’ 
=9(r2~2+rP*/~> (2 +4y0/3 -29) (26b) 

- -2! 2! -- 9 +(y+a/n)3l s = 3 7  

and so on. We thus find 

(30) 
1 
2 e(a>=--(n-l) In Hence eliminating @, we have the relation 

where ‘I9 2Ez 4 + --=- { +(n-y) -+(y) --In n )  , (27a) 
(P2rY”+P”/n) 3/37, 3 s=1 

Further relations involving higher moments could be set 

ample, with n=25, y=O.l, and P=1, our computations 

X(-l+$) + * - .}”$ {E(n-a> 

X(-l+$)+. . .y+. . . 

up similarly, and they may be used as a check on numerical 
computations of the moments in finite samples. For ex- 

lead to  the value 10.5449 for the left-hand side of (27a), 
whereas the right-hand side equals 10.5440. 

(31) 

where Z= 1+ ainr. 

density h(z)  given by 
* 

7. THE HIGHER ASYMPTOTIC MOMENTS OF Y 

It is now convenient to consider the variate x=nyy with 

Since we know the cumulant generating function of y 
from (12) or (24), and since the range of y is nonnegative, 
we can invert the generating function by using the Laplace 
transform inversion theorem. I n  this way, the density of y 
can be written 

where 

with 

a2 a3 
0(s)=a+- s+- s2+ . . . 2!n 3!n2 

and 
yA=+(r) -+(nr) +Inn. 

Now using the asymptotic expansion for yh1 namely 

yA-$ (1-k) -g (l+ j -3 4Y4 (1-2) + . . .  

where from (31) and the well-known result 

we have : 
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ESSA RESEARCH LABORATORIES 
“An Introduction to Hydrodynamics and Water Waves: 

Volume I. Fundamentals,” ESSA Technical Report ERL 118-POL 3-1, 

“Volume 11. Water Wave Theories,” ESSA Technical Report ERL 118-POL 

These technical reports are based on lectures delivered to the Civil Engi- 
neering Department a t  Queen’s University, Kingston, Ontario, in 1959-60. 
Their primary purpose is to present the foundations and essential aspects of the 
theoretical approach to hydrodynamics and water waves at  a relatively simple 
level. A combination of both volumes can be considered as the text for a course 
in applied mathematics as well as the fundamentals of hydraulic and coastal 
engineering. 

Volume I deals with the establishment of fundamental differential equations 
governing the flow motion in all possible cases. The possible approximations are 
also indicated. Methods of integrations and mathematical treatments of these 
equations are dealt with; integrations of general interest and integrations in 
some typical particular cases are presented. 

Volume 11 is devoted to free surface flow motion and wuter wave theories. 
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